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EXECUTIVE SUMMARY
This technical brief presents the validation methodology adopted for the Travel 
Impact Model (TIM) to assess how close the TIM fuel burn estimates are to real-
world fuel burn values. The methodology was developed by the Engineering team 
of Google in partnership with the International Council on Clean Transportation 
(ICCT), and discussed in two Task Group (TG) meetings with experts that are part of 
or delegated by the TIM Advisory Committee (AC). The framework development and 
discussions took place in 2023. In January 2024, the AC agreed to incorporate the 
validation methodology into the TIM workflow. Since then, this framework is applied 
every time a model change that affects fuel burn is proposed, to verify if the change 
improves the model.

Incorporating this validation framework into the TIM aims at increasing the model’s 
accuracy and consistency. Also, it contributes to TIM’s transparency as it is a 
reproducible methodology. In this document, we present the validation framework 
and an example of its application to analyze the effectiveness of a model change. 

As the TIM estimates emissions at the flight level, ideally, model validation would 
be applied considering actual fuel burn data also at the flight level, and if possible, 
from several markets. Preferably, the TIM validation would be developed using 
public datasets to freely test any model change and disclose results. However, public 
historical flight data at the needed granularity is scarce. The only public dataset we 
identified that contains fuel burn data at the flight level is from Brazil. A limitation of 
this dataset is that fuel burn data is only provided for Brazilian airlines, which reduces 
market and aircraft coverage, especially for long-haul flights.

To deal with this lack of public data, Google has partnered with a growing number 
of airlines that provide actual operational data, including fuel burn. However, this 
data is private, which limits validation transparency. Given these data limitations, we 
combine public data from Brazil with the anonymized version of the private airline 
data to represent the validation sample. The combined sample considers operations 
from 2019 in Brazil and 2019, 2021, and 2022 for the partner airlines. The aircraft models 
represented in the dataset account for 76.2% of the global flights in 2019.
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The proposed validation framework is divided into three steps: i) clean the sample to 
remove flights that are not relevant, ii) aggregate fuel burn data to make it comparable 
with estimated emissions, and iii) apply a set of metrics to evaluate the model. 
Step ii) aims to statistically define a representative fuel burn value for a given route-
aircraft-airline combination to be compared with the model estimates. Establishing 
a representative fuel burn value is needed as the dynamic and stochastic behavior of 
operational and weather conditions create variations in the fuel burned for a specific 
aircraft operated by a single airline on a unique route. In step iii), we consider as error 
the difference between the estimated fuel burn and the representative real fuel 
burn for each route-aircraft-airline group. The metrics analyzed include: general error 
metrics (median absolute error, under/overestimation trends), distribution of errors, 
distance-based error metrics, and distance- and aircraft-based error metrics. For 
the distance-based and distance- and aircraft-based metrics, we calculate weighted 
averages considering the global flight distribution to scale the results of the sample to 
the global context.

We provide a practical example of the validation framework application, analyzing 
the implementation of the distance correction factor, a model change that was under 
discussion when the validation methodology was being developed. We compared the 
real-world fuel burn with the TIM estimates, considering two versions of the model: 
baseline (TIM 1.8.0) and model with the distance correction application. We observe 
that the error metrics individually may have conflicting results, and that the impact of 
a model change may be unevenly distributed, improving some portions of the flights, 
but potentially worsening others. The decision about whether a change should be 
implemented or not needs to consider the aggregated set of error metrics in a careful 
analysis, considering what each metric represents.

The recommended approach to approve model changes is the following:

1.	 The validation analysts (Secretariat or Google) run the baseline model and the 
alternative model, which is the model with the application of the proposed change, 
through the validation process. The analysts summarize the validation results, 
including the error metrics and a discussion of the findings. 

2.	 The group investigating the change (TG or AC) and the validation analysts meet 
and discuss the validation results. If discussed at the TG level, the group should 
reach a consensus on a recommendation to the AC.

3.	 The AC decides taking into account the validation results and the 
recommendations of the TG.

In addition to characterizing the impact of a model change, the application of the 
validation framework helps identify possible modeling issues, which can motivate 
future improvements. The validation methodology will keep improving and new 
metrics may be added in the future, as model changes are tested, and as more real-
world data is incorporated into the sample to increase the market coverage.
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1.	 OBJECTIVE
The objective of the model validation work developed by the International Council 
on Clean Transportation (ICCT) and Google was to establish a transparent and 
reproducible validation methodology for the Travel Impact Model (TIM), increasing 
its accuracy and consistency. The validation methodology will also be used as a key 
decision input to analyze if proposed model changes are actually improving the model 
by providing estimates that are closer to real-world flights. The validation methodology 
helps inform the AC decision-making process on whether to adopt particular changes 
to the model. The final goal is to publish the validation methodology and results, 
giving external parties the tools to reproduce and scrutinize our validation claims.

In addition to presenting the validation methodology, this document discusses if the 
proposed methodology effectively analyzes how close the fuel burn estimates are to 
actual fuel burn, and how consistent the model is across different airlines and markets. 
An application of the validation to analyze a model change is presented as an example, 
considering the distance correction proposed to be implemented. This document also 
summarizes the recommendations that were shared at the 3rd Advisory Committee 
(AC) meeting in January 2024 and considers the discussions and suggestions from 
two task group meetings held in the fourth quarter of 2023. At the 3rd AC meeting, the 
group agreed to incorporate the proposed validation methodology into the TIM and 
since then, this methodology has been applied to analyze any model changes that 
affect the fuel burn estimates.

2.	 VALIDATION BACKGROUND: CURRENT VALIDATION AND 
MAIN CHALLENGES

One of the main challenges of the TIM model validation is having access to reliable 
data on past flights and their fuel burn, from different airlines and different markets, 
at the needed granularity. Ideally, model validation would be carried out using fuel 
burn data at the flight level, the data specificity of the TIM estimates. The Google 
team has access to real-world flight data reported by some partner airlines. However, 
this data is private.

To be transparent, the TIM validation would ideally adopt public datasets containing 
fuel burn at the flight or the route level to freely test the model and disclose findings. 
This kind of data is, unfortunately, very scarce. There are very few markets with public 
flight and fuel burn data. U.S. Department of Transportation Form 41,1 for example, 
provides fuel burn data, but at the aircraft type level only, aggregated by airline and 
month. Brazil’s Microdata2 was the only public dataset we were able to identify that 
provides fuel burn data at the flight level. The lack of appropriate public fuel burn 

1	 This is available at https://www.transtats.bts.gov/Tables.asp?QO_VQ=EGI&QO_anzr=Nv4%FD-
Pn44vr4%FDSv0n0pvny%FDer21465%FD%FLS14z%FDHE%FDSv0n0pvny%FDQn6n%FM&QO_fu146_
anzr=Nv4%FDPn44vr4%FDSv0n0pvny 

2	 Brazil’s Microdata available at https://www.gov.br/anac/pt-br/assuntos/regulados/empresas-aereas/
Instrucoes-para-a-elaboracao-e-apresentacao-das-demonstracoes-contabeis/envio-de-informacoes

https://www.transtats.bts.gov/Tables.asp?QO_VQ=EGI&QO_anzr=Nv4%FDPn44vr4%FDSv0n0pvny%FDer21465%FD%FLS14z%FDHE%FDSv0n0pvny%FDQn6n%FM&QO_fu146_anzr=Nv4%FDPn44vr4%FDSv0n0pvny
https://www.transtats.bts.gov/Tables.asp?QO_VQ=EGI&QO_anzr=Nv4%FDPn44vr4%FDSv0n0pvny%FDer21465%FD%FLS14z%FDHE%FDSv0n0pvny%FDQn6n%FM&QO_fu146_anzr=Nv4%FDPn44vr4%FDSv0n0pvny
https://www.transtats.bts.gov/Tables.asp?QO_VQ=EGI&QO_anzr=Nv4%FDPn44vr4%FDSv0n0pvny%FDer21465%FD%FLS14z%FDHE%FDSv0n0pvny%FDQn6n%FM&QO_fu146_anzr=Nv4%FDPn44vr4%FDSv0n0pvny
https://www.gov.br/anac/pt-br/assuntos/regulados/empresas-aereas/Instrucoes-para-a-elaboracao-e-apresentacao-das-demonstracoes-contabeis/envio-de-informacoes
https://www.gov.br/anac/pt-br/assuntos/regulados/empresas-aereas/Instrucoes-para-a-elaboracao-e-apresentacao-das-demonstracoes-contabeis/envio-de-informacoes
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data from different markets to test the model also increases the risk of not having 
geographic representativeness.

Public data, whenever available, will be prioritized, as it contributes to the validation 
transparency. We expand the validation sample with the private data to increase 
aircraft model coverage and market representativeness, although this data combination 
limits transparency. Currently, the analyzed sample combines ANAC data with an 
anonymized version of the private data shared by airlines. 

2.1.	 ANAC Microdata
Brazil’s flight data (“Microdata”) is published monthly by the National Civil Aviation 
Agency (ANAC) and contains information about all domestic and international flights 
operated to and from Brazil since the year 2000. Besides the flight information, 
including flight number, airline, aircraft model, and airport-pair, it provides operational 
data such as the number of passengers transported and cargo mass carried for a 
given flight. For Brazilian airlines, some additional information is provided, such as 
actual fuel burn and aircraft tail number. Table 1 summarizes the information available 
in the ANAC Microdata. 

Table 1. Data available in ANAC Microdata

Category Data

Flight Information

•	 Flight number
•	 Airline
•	 Service type (pax or dedicated cargo) (only for Brazilian airlines)
•	 Departure and arrival date and time

Airport-pair •	 Origin and destination airports/cities/countries
•	 Great circle distance

Aircraft

•	 Model
•	 Seats
•	 Maximum payload
•	 Tail number (only for Brazilian airlines)

Operations
•	 Number of passenger transported and/or mass of cargo
•	 Baggage mass (only for Brazilian airlines)
•	 Fuel consumed (only for Brazilian airlines)

For the validation analysis, we selected ANAC data from 2019 to avoid including 
operations impacted by the COVID-19 pandemic in our sample. For the validation 
analysis, we initially selected ANAC data from 2019 to avoid including operations 
impacted by the COVID-19 pandemic in our sample. We do not use older data at this 
point, because airline practices and aircraft in use change over time. We recommend 
including more years of operation as a refinement.

Table 2 presents a summary of ANAC Microdata, considering flights from 2019. We see 
that flights performed by Brazilian airlines—the flights with fuel burn information—
represented 90% of the total flights performed that year, and 87% of passengers 
transported. The sample considered in our analysis is highlighted in red in the table 
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and includes only passenger flights performed by Brazilian airlines. We remove flights 
operated by foreign airlines as the corresponding fuel burn information is not available, 
and we disregard dedicated cargo flights as the TIM focuses on passenger flights. 
More information about Brazil’s commercial aviation market and the sample selection 
is detailed in Appendix 1.

Table 2. Summary of Brazilian flights in 2019

Airline 
nationality Route type

Service 
type

Number 
of 

flights

Number 
of 

airlines

Total 
passengers

(million)
Total fuel 
(million L)

Number 
of aircraft 

models
Number of 

aircraft

Brazilian Domestic Passenger 789,072 10 98.14 3,412.6 26 525

Brazilian International Passenger 50,457 7 9.03 1,483.8 19 362

Brazilian Domestic Dedicated 
cargo 13,279 7 0 90.4 6 36

Brazilian International Dedicated 
cargo 1,581 2 0 38.9 2 5

Foreign Domestic Unreported 1,213 35 0.27 Unreported 26 Unreported

Foreign International Unreported 84,417 89 15.42 Unreported 40 Unreported

Considering the scope of the validation work, the main strength of the ANAC Microdata 
is that it contains fuel burn and other operational information at the flight level, which 
means it can be directly compared with the TIM estimates. Also, data is available since 
the year 2000, providing a long time series for testing. However, fuel burn data is only 
available for Brazilian airlines, reducing the airline and aircraft coverage, and limiting 
the analysis, especially for international flights (and long-haul flights, as a consequence). 
In addition, Brazilian domestic flights are highly concentrated on a few airlines, and the 
traditional low-cost-versus-legacy-carriers market dynamics seen in other countries 
may not apply to Brazil. Lastly, data is self-declared, and there is no third-party audit, 
which means reporting errors may not be identified.

2.2.	Private airline data
The validation sample includes passenger flight data, privately shared by airlines. Given 
data confidentiality restrictions, the airlines are anonymized and always treated as a 
block, never as individuals. Currently, the sample includes data from several airlines, 
considering operations from the years 2019, 2021, 2022, and 2023. However, data is not 
always provided at the flight level. For some cases, fuel burn is provided at the aircraft 
and route level, being represented by the mean fuel burn of all flights performed in a 
given route and year. Table 3 presents a summary of the private airlines’ data.
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Table 3. Summary of private airline data

Service type Number of flights
Total fuel
(million L)

Number of aircraft 
models

Passenger 2,306,758 24,450 41

The Google Engineering Team is continuously working with airlines to expand the 
flight data sample and market representativeness. But, like the ANAC data, the private 
airline data is self-declared and there is no third-party audit.

2.3.	Market representativeness of the data
To analyze if the sample’s fuel burn data represents the global market, we calculate 
its distance and aircraft coverage. Figure 1 shows the flight distance distribution 
of the sample, considering the number of flights (a) and the total fuel burn (b), 
compared to global flight distributions. Global flight distance data were sourced 
from OAG Aviation Worldwide Limited (2019)3, and global fuel burn come from 
ICCT’s Global Aviation Carbon Assessment (2019)4. In Figure 1 (a), we see that most 
of the flights in our sample have distances shorter than 1000 nautical miles and that 
there are very few flights longer than 5500 nautical miles. The distribution of flight 
distances is roughly similar to the global distribution of flight distances. Figure 1 (b) 
shows that longer flights contribute (proportionally) more to emissions than shorter 
flights, given that flights from groups of long distances burn more fuel, even with 
relatively lower flight frequency.

3	 Historical flight schedules data provided by OAG Aviation Worldwide Limited is available at  
https://www.oag.com/airline-schedules-data

4	 Brandon Graver, Dan Rutherford, and Sola Zheng, CO₂ Emissions from Commercial Aviation: 2013, 
2018, and 2019 (International Council on Clean Transportation, 2020), https://theicct.org/publication/
co2-emissions-from-commercial-aviation-2013-2018-and-2019/. 

https://www.oag.com/airline-schedules-data
https://theicct.org/publication/co2-emissions-from-commercial-aviation-2013-2018-and-2019/
https://theicct.org/publication/co2-emissions-from-commercial-aviation-2013-2018-and-2019/
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Figure 1. Comparing the distance distribution of the validation sample (ANAC + private 
airline data) and global operations in 2019 based on flight frequency (a) and fuel (b)

In relation to aircraft model coverage, we calculated that 60.4% of 2019 
global flights5 are performed using aircraft models that are available in ANAC 
Microdata from 2019. Considering private data shared by the airlines that have 
a partnership with Google, we observe that the aircraft models they operate 
account for 71.0% of global flights. When combining both data sources, the 
data coverage increases to 75.3%. Table 4 summarizes these results.

Table 4. Global flight coverage according to the aircraft models available in different flight 
data sources

ANAC Private airlines data
All sources  

(ANAC + private)

60.4% 71.0% 75.3%

5	 See footnote 3.
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3.	 COMPARING REAL FUEL BURN WITH THE TIM
The fuel burn of a flight tends to increase with the route distance, but it also depends 
on the aircraft technology, weather conditions, operational factors such as payload 
mass and speed, and many other factors, including aircraft maintenance and airport 
congestion. As a consequence, fuel burn variations are expected even for a single 
aircraft of a single airline, operating on a specific route. We can observe this behavior 
in Figure 2. This figure presents a scatterplot of fuel burn and distance for individual 
flights on the four most used aircraft models by Brazilian airlines in 2019, compared to 
the TIM estimates (dashed line).

Figure 2. Fuel burn versus distance for each individual flight by the four most common 
aircraft types in the ANAC data in 2019

4.	 VALIDATION METHODOLOGY
Validation occurs by the following three steps:

1.	 Clean sample to remove flights that are not relevant.

a.	 Remove flights that have no reported fuel burn or are reported as 0 L.

b.	 Remove dedicated freighter flights, which are not supported by the TIM.

2.	 Aggregate fuel burn data to make it comparable with estimated emissions.
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a.	 Considering that there is typically a large variance of fuel burn for even the 
same aircraft operating the same route on different occurrences, define a 
representative fuel burn value for a given group, for example mean or median 
fuel burn for an aircraft/carrier/route. This is needed to make data from 
different sources compatible, as part of the private airline data is not reported 
at the flight level, but at the route level.

b.	 Process:

i.	 Start with raw data at the flight level (flight/airport-pair/airline/date/time).

ii.	 Aggregate by carrier, aircraft, origin, and destination.

iii.	 Remove aggregations that have fewer than 50 individual samples.6

iv.	 Define a representative fuel burn value for each group. We suggest that 
the median of the distribution be adopted as a representative value. 
However, we are currently adopting the mean to make data from different 
sources compatible, as some airlines that have privately shared data 
reported the mean fuel burn of their routes. 

v.	 Some additional data cleaning may be needed if there are outliers biasing 
the average calculation. A possible mitigation process would be removing 
the extreme fuel burn values of each group (keeping data within the 90th 
percentile, for example). We have not applied this process yet, but it could 
be a future refinement if the need is identified.

The aggregation should allow a direct comparison between the actual fuel burn values 
and the model estimates. We are currently using fuel burn aggregated by aircraft/
carrier/route as the base model adopted by the TIM provides a single function of fuel 
burn for each aircraft that depends only on distance. In addition, with this aggregation, 
we avoid having the metrics skewed toward more frequent routes. 

3.	 Apply a set of metrics to evaluate the model, for example:

a.	 General error metrics: median absolute error, under/overestimation 
percentages

b.	 Distribution of errors

c.	 Error as a threshold (what % of results are within X% of actuals)

d.	 Distance-based error metrics

e.	 Distance- and aircraft-based error metrics

f.	 Other metrics as defined

These metrics are detailed in the following section.

6	 The limit of 50 flights to include a group of airline-aircraft-route in the sample is a working assumption, 
and we are investigating some statistical tests for the sample size definition to avoid unnecessary data 
elimination.
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4.1.	 Error metrics
For each unique carrier, aircraft, and route combination, calculate the relative 
difference in the TIM estimate to the mean real-world fuel burn reported in the 
sample, as defined in Equation (1). The analyses reported in this document consider 
the estimates provided by the TIM 1.8.0.

	
[Fuel burn]TIM – [Fuel burn]Mean value

[Fuel burn]Mean value

	 (1)

A positive error value indicates that the TIM is overestimating the fuel burn while a 
negative value indicates an underestimation of the fuel burn. Considering the sample 
composed of ANAC data and the private data from partner airlines, we find that the 
TIM underestimates fuel burn 76% of the time while it overestimates 24% of the time.

For the same sample, taking the absolute value of the errors, the median error over 
all aggregate groups is 8.0%. We adopt the absolute values to avoid negative errors 
(underestimation) being canceled out by positive errors (overestimation). While 
this single value is useful to characterize the accuracy of the model, evaluating the 
precision of the model requires looking at the distribution of errors. 

4.2.	Distribution of errors
There is variation in the error calculated for each aircraft-carrier-origin-destination 
combination. The distribution of the errors is shown in Figure 3. The frequency 
distribution on the left shows the peak of the distribution being lower than 0, 
which indicates a tendency to underestimate fuel consumption. The distribution 
is also not mirrored on either side of the peak. It has a longer tail on the right side 
(overestimation) than on the left (underestimation). On further investigation, it was 
found to be due to larger errors found at shorter route lengths. These trends are 
confirmed by the cumulative distribution of errors shown on the right. 
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Figure 3. Frequency (left) and cumulative (right) distributions of the error in the TIM’s fuel 
burn estimates, considering the real-world fuel burn from the combination of ANAC 2019 
and private airlines data



12

4.3.	Error thresholds
One aim is to use this validation methodology to quantify how suggested changes 
to the model improve its performance. For this purpose, it is useful to define the 
percentage of estimates that are below specific error thresholds. We choose threshold 
levels of 2%, 5%, 10%, and 20% and show the percentage of estimates that are below 
these levels (Table 5), considering absolute errors. To illustrate how to read the table, 
13% of the estimates from the TIM are within 2% of the median fuel burn reported in 
the actual flight sample and 62% of the estimates are within 10% of the median fuel 
burn reported in the sample. 

Table 5. Percentage of observations that are below certain absolute error thresholds for the 
baseline TIM estimates

Weights Error threshold Percentage of observations

0.1 <2% 13%

0.2 <5% 31%

0.3 <10% 62%

0.4 <20% 95%

Weighted average 63.8%

To aggregate these metrics further, we use weightings to describe the relative 
importance of each error threshold. The priority is to reduce the largest errors, while 
getting the error to less than 2% is less important. Consequently, we ascribe increasing 
weights: 0.1, 0.2, 0.3, and 0.4 to the <2%, <5%, <10%, and <20% thresholds, respectively. 
The weighted average number for the baseline TIM estimates is 63.8%. While the 
exact value of the number cannot be ascribed to a physical meaning, a higher value is 
desirable. The best possible score is 100% and would only happen if all errors are <2%. 
The worst possible score is 0% and would only happen if all errors are >20%. 

The table of values and the weighted average number provide numerical 
quantifications of the threshold. The error thresholds can also be visually represented 
by a cumulative distribution of the absolute errors (Figure 4). 
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Figure 4. Cumulative distribution of the absolute error thresholds

Given that the fuel burnt on a flight is highly dependent on the aircraft and the 
distance it flies, we also characterize the errors along these dimensions. 

4.4.	Distance-based error analysis
To show trends of the error with the distance flown, the carrier-aircraft-origin-
destination combinations are binned based on the distance. Then the average of the 
errors for all the combinations in that bin is taken, weighted by the number of flights. 
Figure 5 plots a bar graph of the trend for ANAC 2019 (a) and the private data shared by 
partner airlines (b). Here the binning done is “right inclusive.” The 2,000 nautical mile 
bin, for example, includes all combinations that were greater than 1,500 nautical miles 
(NM) and less than or equal to 2,000 NM. 

The figure shows that the TIM 1.8.0 tends to underestimate fuel burn, except for the 
short-haul flights reported by ANAC, for which we observe an overestimation pattern. 
This overestimation trend is seen for the flights shorter than 500 NM, and the highest 
error is seen for the shortest flights, in the 125 NM bin. There are a few potential 
reasons for this overestimation behavior. 125 NM is the shortest distance for which the 
underlying EEA model provides fuel burn data. As a consequence, any flights shorter 
than 125 NM require extrapolation. Additionally, the default LTO cycle is ~30 minutes 
long, which may be a poor assumption for short flights, which are likely to operate 
from smaller airports with more flexible landing and takeoff procedures that could 
shorten the LTO cycle time and reduce emissions. Lastly, the EEA model calculates LTO 
fuel burn assuming operating at European airports, which may be more congested 
than Brazilian airports and less representative of other markets. Further analysis of 
short-haul flights and the LTO cycle fuel burn will be conducted in Workstream 7 
(improving model granularity).  
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Figure 5. Weighted average error by distance bins based on the distance traveled for ANAC 
2019 (a) and private airline data (b).

In general, we observe a consistent underestimation trend for longer-distance 
flights, while the trend is inconsistent for shorter-distance flights, depending on the 
data source. Figure 6 shows the weighted average error for the combined sample, 
including both ANAC and private airline data. With the sample combination, the 
underestimation trend prevails for the fuel burn estimation of longer flights, and we 
observe a small overestimation trend for flights shorter than 250 NM.
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Figure 6. Weighted average error by distance bins based on the distance traveled for the 
complete sample, combining ANAC 2019 and private airline data

The analysis shown above considers the real value of the error, including negative 
(underestimation) and positive (overestimation) errors. Although this is useful to 
analyze the general error trend in a given distance bin, negative values cancel out 
positive values, and it does not give a reliable average error magnitude. To capture 
that, we generate a version of the chart presented in Figure 6 but considering the 
absolute errors (Figure 7).
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Figure 7. Weighted average absolute error by distance bins based on the distance traveled 
for the complete sample, combining ANAC 2019 and private airline data
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To reflect the distance distribution from the global market and not from the sample 
(see Figure 1), we calculate an average error metric weighting results from the 
combined sample by the global distribution. For the weighting, two metrics are used: 

1.	 The percentage of global flights in each distance bin

2.	 The percentage of global emissions in each distance bin

These two weightings help scale the results of the sample to the global context, but 
they highlight two differing objectives. Weighting by the number of flights puts more 
importance on getting the emissions correct for each individual flight and emphasizes 
the performance on shorter distance flights which occur more frequently. Weighting 
by emissions puts more importance on getting the emissions correct for the more 
polluting flights and emphasizes the performance on longer distance flights which 
emit more CO2.

When weighted by the distribution of flights, the weighted average absolute error 
metric is 9.5% while when weighted by the distribution of emissions, the weighted 
average absolute error metric is 9.8%. While there is no physical interpretation of this 
metric, a value closer to zero is desirable. 

4.5.	Distance- and aircraft-based error analysis
To investigate the trend in fuel burn in greater detail, we separate out the 
fuel burn trends of each aircraft type. Still working with the aggregated data, 
we now filter for each aircraft type and plot the mean fuel burn versus route 
distance. Figure 8 presents the mean fuel burn from the ANAC sample as 
blue dots and the fuel burn estimate from the TIM as a dashed line. Each 
subplot represents one of the four most common aircraft types in the 
analyzed sample. There is also a R2 value for each subplot. The R2 value is a 
metric used in linear regression and is a quantification of how well the fuel 
burn estimates from the TIM fit the real-world fuel burn data. It is calculated 
as described by Equation (2). 

	 R2 = 1 – 
Σi (yi – ŷi )

2

Σi (yi – yi )
2

 	 (2)

For a given aircraft, i is the route-airline combination, yi is the median fuel burn of real 
operation data, ŷi is the TIM estimate and y  is the mean fuel burn for that aircraft. 
Higher values of R2 indicate a better fit. 
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Figure 8. Fuel burn versus distance trends for the four most common aircraft in the ANAC data 

Similar to the distance-based error analysis, there is a need to aggregate the 
performance over each aircraft into a single error metric. In the case of this distance 
and aircraft based error analysis, we calculate a weighted average of the R2 values for 
all the aircraft that are represented in the validation data. The weighting is determined 
by the percentage of global flights that are flown by the specific aircraft. The aircraft 
represented in the validation sample cover about 76.2% of global flights. The weighted 
average R2 value of all the aircraft, after normalizing by the total aircraft coverage, is 
0.877. Higher values are desirable, and the maximum score would be 1.0.

5.	 VALIDATING THE APPLICATION OF A DISTANCE 
CORRECTION FACTOR 

In this section, we present an application of the validation methodology to analyze 
if the adoption of a distance correction factor is improving the model. This model 
change was being discussed when the validation framework was being developed. 
The distance correction factors derive from work developed by the Imperial College 
London.7 They are market-based averages that correct for actual distance flown, which 

7	 Roger Teoh, Zebediah Engberg, Marc Shapiro, Lynette Dray, and Marc Stettler, “A High-Resolution 
Global Aviation Emissions Inventory Based on ADS-B (GAIA) for 2019–2021,” Atmospheric Chemistry 
and Physics, 24, (2024), 725-744. https://doi.org/10.5194/acp-24-725-2024.

https://doi.org/10.5194/acp-24-725-2024
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is usually higher than the direct distances (great circle distance, or GCD) between 
the origin and destination due to airspace restrictions, avoidance of bad weather 
conditions, and airport congestion. 

All the error metrics were calculated considering the validation sample, which 
combines the ANAC data from 2019 and the data privately shared by the partner 
airlines, aggregated by route-aircraft-carrier groups.

5.1.	 Average model error and trends
Table 6 compares the average model error of the baseline TIM model (TIM 1.8.0) with 
the version of the TIM adopting the distance correction. We choose as the “average 
model error” the median absolute error, considering the absolute fuel burn error for 
each group of route-aircraft-carrier (error defined in Equation (1)). Table 6 also shows 
the general behavior and trends of the error distribution, showing the percentage of 
observations in the validation sample that is being overestimated or underestimated 
by each model. The color code indicates which model had the better (green) and the 
worse (yellow) for a specific error metric.

Table 6. Error metrics for baseline and alternative model, considering the application of the 
distance correction factors

Baseline (TIM 1.8.0) TIM 1.8.0 + distance correction

Median absolute error 8.0% 6.6%

Overestimation 24% 31%

Underestimation 76% 69%

We observe that the median absolute error has reduced from 8% to 6.6% with the 
distance correction application, showing that the general accuracy of the model has 
increased with this correction factor. The baseline model overestimates fuel burn for 
24% of the flights and underestimates for 76% of the flights. The application of the 
distance correction factors decreases the underestimation trend. With the distance 
correction, we find that it overestimates fuel burn in 31% of the occurrences. We do 
not use the overestimation and underestimation values as error metrics as it is not 
possible to analyze the error magnitude, only the error direction, being unable to 
define a preferred value for them. 

These aggregated metrics are helpful to analyze the models’ accuracy (how close the 
estimates are to real fuel burn) and general trend (over or underestimation), but they 
provide no information about the models’ precision (how close the estimates are to 
each other). The precision can be evaluated with the distribution of errors, discussed in 
the following section.

5.2.	Distribution of errors
A model change does not necessarily impact the estimates’ distribution evenly. Figure 
9 compares the frequency distribution of errors calculated for each aircraft-airline-
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route group for the baseline model and the model with distance correction. The figure 
shows that the underestimation trend of the model has reduced with the application 
of the distance correction, given that the graphic has shifted to the right.
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Figure 9. Frequency distributions of errors of the TIM’s fuel burn estimates, comparing the 
baseline model to the model with distance correction

The curve of the model has kept a roughly similar shape, indicating that the precision 
of the estimates has not significantly changed with the application of this correction. 

5.3.	Error thresholds
We also analyze how the correction factors application has impacted the error 
distribution by calculating the percentage of estimates that are below specific error 
thresholds for each alternative model, as shown in Table 7. We consider 2%, 5%, 10%, 
and 20% as threshold levels and adopt the same color code used in the previous table: 
green indicates the model that had the better performance in a given error threshold, 
and yellow indicates worse performance. 
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Table 7. Percentage of observations that are below certain error thresholds for the baseline 
and the alternative model (TIM with the application of distance correction)

Percentage of observations

Weights Error thresholds Baseline (TIM 1.8.0)
TIM 1.8.0 + 

distance correction

0.1 <2% 13% 16%

0.2 <5% 31% 39%

0.3 <10% 62% 70%

0.4 <20% 95% 96%

Weighted average 63.8% 68.8%

Results show that with the distance correction application, the frequency of estimates 
within the limit error has increased for all error categories analyzed. The number of 
estimates that are within 10% of the median fuel burn, for example, has increased from 
62% to 70%.  

In aggregating the results of the error thresholds, a weighted average is used, as 
described in Section 4.3 and considering the weights presented in the table. Using the 
weighted average, we see that the distance correction factor improves the TIM on the 
error threshold metric. 

The visualization of the cumulative distribution of the absolute errors helps to analyze 
the error thresholds differences between the models. Figure 10 plots the cumulative 
distribution curves for the model with the distance correction and the baseline. The 
figure shows that the distance correction provides absolute errors lower than ~7% for 
~50% of the observations. The baseline model performs slightly worse for the same 
error threshold, having ~45% of its observations with errors within ~7%. 
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Figure 10. Comparison of the cumulative error distribution of the baseline and alternative 
models (models with the application of distance correction and fuel burn correction)
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5.4.	Distance-based metrics
Another important feature to be analyzed is how the errors of the estimates vary with 
the distance flown. Figure 11 shows the weighted average of the errors for all carrier-
aircraft-route groups of the sample considering ANAC 2019 data and private airline 
data, binned by distance, and weighted by the number of flights. Figure 12 shows the 
same analysis, but with the absolute errors.
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Figure 11. Weighted average error observed for each distance bin, considering the baseline 
and alternative models (with the application of distance correction and fuel burn correction)
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Figure 12. Weighted average absolute error observed for each distance bin, considering the 
baseline and alternative models (with the application of distance correction and fuel burn 
correction)



22

For both models, we observe in Figure 11 a general underestimation trend for almost 
all distance bins, except for the shortest flights, with distances shorter than 125 NM. 
The baseline model presents a slight overestimation trend for this distance bin only.  
As discussed in section 4.4, considering the baseline model, we observed some 
important discrepancies between fuel burn estimates of ANAC and private airline data 
for short-haul flights. For ANAC data, the TIM tends to overestimate fuel burn for flights 
shorter than 500 NM, while we see an underestimation trend for the private airline 
data in the same distance bins. Further analyses are required to understand these 
differences and to check if the default LTO cycle adopted by EEA is appropriate for 
shorter flights, especially in non-European markets. When combining both datasets, 
the weighted average error for the 125 NM bin is positive but lower than 2%. However, 
this is a consequence of having negative and positive errors in the sample, as they 
compensate for each other in the average calculation.  

The error magnitude can be better investigated by analyzing the average absolute 
error by distance, presented in Figure 12. We observe that the median absolute errors 
have reduced across all distance bins with the distance correction application. The 
average absolute errors vary between 8% and 14% by distance bin for the baseline 
model and between 7% and 13% by distance bin for the model with the application of 
the distance correction factor.

Using the weighted average metrics explained in Section 4.4 to scale for global 
context, we can compare the performance across the models. Table 8 presents each 
of the metrics for the two models being considered. Metric values closer to zero 
are desirable. We observe that the model with the distance correction application 
performs better for both global frequency and emissions weighted metrics. 

Table 8. Weighted average metrics for the distance-based error analysis comparing the 
baseline model performance with the application of distance correction and fuel burn 
corrections.

Weighted average metrics

Weighting Baseline (TIM 1.8.0) TIM 1.8.0 + distance correction

Global flight distribution 9.54% 8.33%

Global emissions distribution 9.79% 8.50%

5.5.	Distance- and aircraft-based error analysis
An additional characteristic to be analyzed is how fuel burn varies with distance 
flown for each aircraft, and how this variation changes with the correction factors 
adoption. Figure 13 plots the median fuel burn of the ANAC sample as blue dots and 
the fuel burn estimate for each variation of the TIM model as dashed lines. Each 
panel represents one of the four most common aircraft models in the ANAC data. For 
each model, we calculate the R2 value, considering the median fuel burn versus the 
estimated fuel burn. For a given aircraft model, higher R2 values indicate a better fit of 
the model to the median fuel burn. 
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Figure 13. Comparison of the fuel burn versus distance trends for the baseline (BL) and 
distance correction (DC) models, considering the four most common aircraft in the  
ANAC database. The actual fuel burn presented is the median of all flights performed for  
a given distance.

We should remark that the R2-values can be compared across the TIM estimates 
(baseline vs. alternative models) for a specific aircraft type, given that they are 
calculated using the same fuel burn distribution. For this same reason, the R2-values 
of different aircraft cannot be compared across each other. The R2-value will depend 
highly on the density of observations, which is unique for each aircraft, and on the 
number of routes operated by each aircraft and the diversity of distances that are 
represented.

The performance across all the aircraft is aggregated using a weighted average where 
the weighting represents the percentage of global flights that are flown on the specific 
aircraft (explained in Section 4.5). 

Table 9. Weighted average metric for the aircraft- and distance-based error analysis comparing 
the baseline model performance with the model with the application of distance correction

Weighting Baseline (TIM 1.8.0) TIM 1.8.0 + distance correction

Global flight coverage 0.877 0.886
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6.	 HOW TO DECIDE WHETHER A CHANGE GETS 
IMPLEMENTED?

Across the different types of error analysis, certain metrics have been calculated to 
quantify the performance of each model. The individual error analyses may have 
conflicting trends that need to be aggregated to make an informed decision on 
whether a change gets implemented or not. We present only the aggregate metrics 
in Table 10. Each error metric has a different ideal value that is included in the first 
column. The colors represent the relative performance of the models for each error 
metric. Green represents the best performing model, and yellow the worst. The color 
code can be adapted, depending on the number of model versions being analyzed. If 
there were three models, the baseline and two new features, then green, yellow, and 
red would be used, yellow representing the midpoint, and red the worst performance. 

Table 10. All error metrics for the validation methodology comparing the baseline model 
performance with the application of distance correction and fuel burn corrections

Error metric Baseline Distance correction

Median absolute error
Ideal value: 0% 8.0% 6.6%

Error threshold analysis
Ideal value: 100% 63.8% 68.8%

Frequency-weighted distance metric
Ideal value: 0% 9.54% 8.33%

Emissions-weighted distance metric
Ideal value: 0% 9.79% 8.50%

Distance and aircraft error metric
Ideal value: 1.0 0.877 0.886

It is important to note that other than the median absolute error, the other metrics do 
not have a specific physical interpretation and so the magnitude of the values does 
not convey any specific information. They should only be used to compare across 
models to see which model provides a more desirable value. The results show that the 
distance correction factor does better than the baseline model on all the five metrics. 

As has been shown with this validation methodology, there might be a lot of nuance 
in the way a change to the model will affect the results of the validation process. 
Although the example presented here shows a model change that has performed 
better in all the error metrics, this might not be true for a different feature. The 
validation necessitates a careful consideration of the different error metrics and what 
each metric represents. It is tempting to calculate a simplistic sum of the relative 
performance across the aggregated metrics, ascribing a value of +1 to the green cells, 
and use that sum to decide whether to approve a change.
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However, we suggest a more nuanced approach. The process of approving changes 
should be: 

1.	 The analysts (Secretariat or Google) run the baseline model and the model change 
through the validation process to get the performance of the models across all the 
error metrics. They summarize the results of the validation process which includes 
details of the analysis as shown in Section 5 and the error metrics as shown in 
Section 4.

2.	 The group investigating the change (TG or AC) and the analysts meet to 
discuss the results. Where discussed at the TG level, reach a consensus on a 
recommendation to the AC.

3.	 The AC decides by taking into account the results of the validation process and the 
recommendation of the TG, as appropriate.

7.	 FINAL CONSIDERATIONS
The proposed validation framework can be applied to analyze any TIM model 
changes that impact the fuel burn estimation. It allows investigating if a new feature 
is effectively improving the model and providing estimates that are closer to real 
operation. In addition, a model change may unevenly impact the estimates. It may 
improve the model for a given portion of the flights, such as specific routes, or aircraft, 
but worsen for others. The validation framework helps to characterize this behavior 
and to identify possible model flaws, which can motivate new improvements.

The framework will keep evolving as new features and alternative models are tested, 
as well as incorporating more actual fuel burn data to the validation sample to increase 
its market representativeness. Some opportunities for future improvements:

•	 Aggregation of the actual fuel burn data and sample size: We aggregate 
all flights of a given route/aircraft/airline/year and define a representative fuel 
burn value per group to be compared with the TIM estimates. Currently we 
eliminate all groups with less than 50 flights registered. We are investigating 
some statistical tests to define an appropriate sample size and avoid eliminating 
unnecessary groups.

•	 Definition of the representative fuel burn value: To define a representative fuel 
burn for every group of route/aircraft/airline/year, we suggest adopting the median 
if possible as it represents the central value of the fuel burn distribution. However, 
given that some of the airlines that have privately shared the data reported the 
mean fuel burn of their routes, we adopted the mean for all the different data 
sources. A future refinement could be requesting airlines to report median instead 
of mean, if sharing data at the flight level is not possible. Also, if any outlier is 
biasing the representative value definition for a given group, a mitigation strategy 
could be to remove flights with extreme fuel burn value (and keep data within a 
specific interval, such as the 90th percentile, for example). 
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•	 Considering different years of operation: Currently, the analyses were 
concentrated in a few years of operation, mainly 2019, 2021, and 2022, avoiding 
2020 due to the impact of the COVID-19 pandemic on the aviation sector. As the 
partnership with airlines increases and more data is available, we suggest testing 
other years of operations separately and rely on data from recent information as 
much as possible to reflect the latest airlines’ practices. The inclusion of older years 
would augment the validation sample, which would increase the model coverage 
and statistical significance. It would also allow testing if year and aircraft age have 
a strong influence on fuel burn and should be considered as a relevant input to 
model fuel burn and emissions.

•	 Communicating validation results: The TIM aspires to be the most trusted and 
transparent emissions model in the industry. Ideally validation results should be 
shared publicly to demonstrate the accuracy of the model. Every time a model 
change is implemented, a document summarizing the validation results should 
be published. 
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APPENDIX A: OVERVIEW OF BRAZIL’S COMMERCIAL 
AVIATION MARKET
The analyses presented in this appendix were developed using ANAC Microdata. Our 
objective is to provide an overview of Brazil’s commercial aviation market and to present 
more details about the sample analyzed in this study. Figure A.1. shows the number of 
flights performed in Brazil from 2015 to 2022, considering domestic and international 
flights. For the international segment, the data comprises flights that have departed from 
or have arrived in Brazil. Depending on the year, 85%–92% of the Brazilian flights were 
domestic. Figure A.2. presents more details about these segments, now showing the 
share of Brazilian and foreign airlines by route type (domestic or international).
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Figure A.1. Number of flights performed in Brazil from 2015 to 2022 by route type (domestic 
or international)
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(domestic or international) and airline nationality (Brazilian or Foreign)
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Domestic flights are almost all performed by Brazilian airlines, while the larger share of 
international flights is operated by foreign carriers. The fuel burn data is only available 
for flights performed by Brazilian airlines, which means there is fuel information for 
basically all domestic flights, but for a smaller share of the international segment. 
Flights performed by foreign airlines are eliminated from our sample.

Considering only flights performed by Brazilian airlines, Figure A.3 presents the 
share of service type (dedicated cargo or passenger) by route type (domestic or 
international). Usually, more than 96% of domestic and international flights are 
passenger flights, except international flights from 2020 until 2022, probably impacted 
by the COVID-19 pandemic. Given that TIM does not include cargo in its modeling 
process, we eliminate cargo flights from our analyzed sample.
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Figure A.3. Number of flights in Brazil from 2015 to 2022, considering only Brazilian airlines, 
by service type (dedicated cargo or passenger)

Our final sample consists of domestic and international passenger flights, performed 
by Brazilian airlines only. For testing the validation process, we selected the 2019 data 
to consider a scenario not impacted by the pandemic.

Another important information is the market share of airlines for domestic and 
international flights in Brazil. Table A.1 presents the 5 airlines with the highest number 
of flights and of passengers transported for domestic passenger flights in 2019. We see 
that the Brazilian domestic flights market is very concentrated in a few airlines, with 
the largest 3 (Azul, Gol, and Latam) being responsible for 93.7% of flights and 95.9% of 
passengers transported that year. The fourth largest airline in 2019, Avianca, declared 
bankruptcy in 2020 but had its operations suspended in May 2019.
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Table A.1. Airline market share for domestic passenger flights in Brazil in 2019

Frequency Passengers

Airline 
(ICAO) Airline

Number of 
flights

Ranking 
(market share)

Number of 
passengers

Ranking 
(market share)

AZU Azul 278,847 1 (35.3%) 26,912,180 3 (27.4%)

GLO Gol 242,316 2 (30.7%) 35,268,116 1 (35.9%)

TAM Latam 218,826 3 (27.7%) 31,955,581 2 (32.6%)

ONE Avianca 25,105 4 (3.2%) 3,204,950 4 (3.3%)

PTB Passaredo 12,457 5 (1.6%) 546,810 5 (0.6%)

Others Others 11,521 Others (1.5%) 250,915 Others (0.3%)

789,072 98,138,552

For international flights, the market is less concentrated. Table A.2 shows the 7 airlines 
with the highest number of flights and of passengers transported for the international 
segment in Brazil in 2019. Fuel burn information is only available for Brazilian airlines, 
highlighted in the table. For this reason, we eliminate foreign airlines from our sample. 
Service type information (passenger or dedicated cargo flight) is also only available for 
Brazilian airlines.

Table A.2. Airline market share for international flights in Brazil in 2019

Frequency Passengers

Airline 
(ICAO) Airline Service type

Number of 
flights

Ranking 
(market share)

Number of 
passengers

Ranking 
(market share)

TAM Latam passenger 26,332 1 (19.3%) 5,401,919 1 (22.1%)

GLO Gol passenger 15,641 2 (11.5%) 2,110,612 2 (8.6%)

ARG Aerolineas 
Argentinas not identified 8,078 3 (5.9%) 1,027,933 7 (4.2%)

CMP Copa 
Airlines not identified 7,880 4 (5.8%) 1,041,709 6 (4.3%)

TAP TAP not identified 7,830 5 (5.7%) 1,810,826 3 (7.4%)

AZU Azul passenger 7,598 6 (5.6%) 1,382,789 4 (5.7%)

AAL American 
Airlines not identified 5,517 7 (4.0%) 1,301,926 5 (5.3%)

Others Others - 57,487 Others (42.2%) 10,355,653 -

136,363   24,433,367

We also present the aircraft share of our sample. Table A.3 shows the 8 most common 
aircraft models for domestic flights in Brazil in 2019 and which airlines operate 
each one of them. Table A.4 shows equivalent information for international flights, 
considering only Brazilian airlines.
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Table A.3. Aircraft share for domestic passenger flights in Brazil in 2019 (8 most common 
aircraft models used to operate this segment)

Aircraft (ICAO) Number of flights Share (%) Airlines

B738 192,042 24.3% GLO

E195 136,574 17.3% AZU

A320 129,696 16.4% TAM, ONE, AZU

A319 57,949 7.3% ONE, TAM

A20N 54,215 6.9% TAM, AZU

A321 52,410 6.6% TAM

AT72 45,287 5.7% PAM, AZU, PTB

B737 31,529 4.0% GLO

Others 89,370 11.3%

789,072

Table A.4. Aircraft share for international passenger flights in Brazil in 2019, considering only 
Brazilian airlines (8 most common aircraft models used to operate this segment)

Aircraft (ICAO) Number of flights Share (%) Airlines

B738 13,899 27.5% GLO

A320 9,684 19.2% TAM, ONE, AZU

B763 7,069 14.0% TAM

B77W 3,597 7.1% TAM

A321 3,350 6.6% TAM

A359 2,863 5.7% TAM

A20N 2,395 4.7% AZU

A332 2,250 4.5% AZU

Others 5,347 10.6%

50,454


