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1.	 SUMMARY
This technical brief presents two model changes recommended by the Travel Impact 
Model Advisory Committee (TIM AC) at its 5th meeting (AC/5) in June 2024. One of 
these changes was to update the TIM base fuel burn model from the 2019 European 
Environment Agency (EEA) model to EEA 2023. This decision resulted from a detailed 
comparison of the accuracy and precision of five alternative fuel burn models. The 
other change agreed was the inclusion of a distance correction factor to adjust the 
stage length input in the fuel burn estimation, previously represented by the direct 
distance between origin and destination airports, known as the Great Circle Distance 
(GCD). Actual flight paths are longer than the GCD due to several factors, including 
route path, airspace restrictions, adverse weather avoidance, and airport congestion. 
The adoption of these model changes increased the TIM market coverage from 97% to 
99% and reduced the model average absolute error from 8% to 6.3%.

2.	 TIM BASE MODEL SELECTION
The fuel burn estimates of the TIM, considering the current TIM 1.9.1 version, are 
provided by the EEA 2019 model.1 The EEA model is an accessible tool, based on real-
world engine testing data from the International Civil Aviation Organization (ICAO)’s 
Engine Emissions Databank (EEDB) and aircraft performance from Eurocontrol’s Base 
of Aircraft Data (BADA) model, that provides fuel burn and emissions estimates for 
many aircraft types. However, the user can only define the aircraft model and stage 
length. All other factors that impact fuel burn, such as flight trajectory and payload, 
cannot be modified. In addition, the model is infrequently updated and some aircraft 
types are not available. This section describes an evaluation of alternative fuel burn 
models that could potentially replace the EEA 2019 and improve the TIM estimation.

In a preliminary analysis, nine fuel burn models were compared considering several 
criteria, such as license, model coverage, and transparency. Of these nine models, five 

1	 EEA, EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019: Annex 1.A.3.a Aviation 2019, 
October 17, 2019, https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-
guidance-chapters/1-energy/1-a-combustion/1-a-3-a-aviation/view.

AC/5-TB/1

https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-a-aviation/view
https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-a-aviation/view
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were selected for quantitative evaluation. We applied the TIM validation methodology2 
to assess how closely each model’s fuel burn estimate matched real-world data. Some 
of the alternative models included other inputs besides aircraft type and stage length, 
such as trajectory and payload. Common assumptions based on real-world global 
flight data were adopted to the extent possible.

This assessment guided the decision to update the TIM base model from the EEA 2019 
to the EEA 2023 model. The EEA 2023 was the only model that improved the fuel burn 
estimates in almost all distance bins compared to EEA 2019. Some alternative models 
could provide better estimates with some refinement of user-defined assumptions 
(e.g., of actual payload and trajectories). However, these and other factors are dynamic 
and vary with time and across aircraft, region, and airline. Defining global averages 
would require additional work and data that are not readily available, while these 
assumptions seem to be already tailored in the EEA model. In addition, some of the 
alternative models would require extra effort to increase the model coverage. EEA 
presents one of the highest market representations considering the models analyzed, 
and the aircraft coverage increased in EEA 2023 compared to EEA 2019. Finally, some 
of the other models presented license limitations.

The alternative model analysis was discussed in three Task Group meetings with 
AC experts or their delegates. These experts contributed data and support to the 
model simulations. The framework development and discussions took place in the 
second semester of 2023 and first semester of 2024. In June 2024, the AC agreed to 
incorporate the EEA 2023 as the TIM base model. 

2.1.	  Scoring system for preliminary model evaluation
This section describes the criteria and scoring system applied to evaluate potential 
alternatives to the EEA 2019 model. For each criterion, each model received a score 
of either -1, 0, or 1, with a higher score indicating better performance. The numerical 
score was accompanied by a color code intended as a visual aid for comparing across 
models, whereby -1 mapped to red, 0 to yellow, and +1 to green. Models with the 
highest score summed across all the criteria were recommended for more detailed 
validation. Below is a short description of the criteria, followed by an explanation of the 
scoring system for each criterion in Table 1.

•	 License: Assesses the availability of the model for public use.

•	 Coverage: Compares the native coverage of aircraft types, calculated as the 
percentage of global flights that could be analyzed using the aircraft that are 
included in the model.3

2	 Travel Impact Model Advisory Committee [TIM AC], 2024. AC/3-TB/1: Methodology for validating fuel 
burn model changes.

3	 The aircraft coverage of emissions estimation models can often be extended by specifying fallback 
aircraft for types that are not specifically included in the model. For example, if a Boeing 737-900 
aircraft is not included in the model, its performance could be approximated as a Boeing 737-800. 
Calculation of native coverage only considers aircraft types that are included in the emissions 
estimation model, without added approximations. 
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•	 Input variables: Compares the input variables available for the fuel burn 
calculation. 

•	 Non-CO2 emissions: Assesses whether the model provides emissions estimates 
for non-CO2 pollutants, namely NOX, SOX, nvPM, and water vapor. 

•	 Transparency: Assesses if all assumptions and calculations that underpin the 
model are accessible. 

•	 Maintenance: Compares the maintenance and update schedule of the models. 

•	 Readiness: Assesses whether the fuel burn model can be readily used as-is 
without further data manipulation or specialized aviation expertise. 

Table 1: Scoring criteria for alternative base model evaluation

Dimension +1 0 -1

License
Can be referenced 
and used by external 
validators

Licensing terms  
are dependent on  
the use-case

Requires a license 
purchase and would  
not be usable by 
external validators

Coverage > 70% of global flights > 50% and < 70% of 
global flights < 50% of global flights

Input 
variables

Can use more input 
variables than just  
flight distance and 
aircraft model

Only uses flight distance 
and aircraft model as 
input variables

Uses fewer or less 
specific input variables

Non-CO2 
emissions

Provides emissions 
estimates for NOX, SOX, 
nvPM, and water vapor

Provides emissions 
estimates for a subset 
of NOX, SOX, nvPM, and 
water vapor

Does not provide 
estimates for any  
non-CO2 emissions

Transparency
All calculations  
and assumptions  
are accessible

Cannot access 
underlying calculations 
or assumptions, 
but has sufficient 
documentation

No access to or no 
documentation of the 
underlying assumptions 
or calculations

Maintenance
Annual or more 
frequent updates  
to the model

Less frequent than 
annual maintenance, 
but responsibility for 
maintenance is external

No maintenance 
schedule or the 
responsibility for 
maintenance is internal

Readiness Can be used without 
aviation expertise

Requires data 
manipulation but  
does not require 
expertise in aircraft 
performance modeling

Requires aviation 
expertise to run the 
model
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2.2.	Initial assessment of alternative models
Nine alternative models were selected for this preliminary analysis based on discussions 
with the AC members. In this section, we introduce each model and score them across 
the dimensions presented above. Table 2 provides a summary of this evaluation.

EEA 2023 update 
In October 2023, the EEA released an update to the EEA model that introduced more 
aircraft models and a new Landing and Takeoff (LTO) cycle calculator and changed the 
fuel burn estimates for some aircraft models.4 It combines aircraft performance data 
from BADA with real-world engine testing data from ICAO’s EEDB to provide fuel burn 
estimates for a large number of aircraft models. The model is presented as an Excel 
spreadsheet with emissions estimates for each aircraft model flying a discrete set of 
distances. 

Similar to the 2019 version, the EEA 2023 model is freely available, provides emissions 
estimates for non-CO2 emissions, and can be used with minimal aviation expertise. 
It has a native aircraft model coverage of 81%, up from roughly 72% in EEA 2019. The 
model still only uses the aircraft model and flight distance as inputs, does not disclose 
all underlying assumptions or calculations, and is not updated annually. 

CO2 Connect
CO2 Connect is an emissions calculator from the International Air Transport Association 
(IATA).5 The fuel burn estimates are based on operations data collected from airlines. 
The calculator provides a per-seat estimate for the fuel consumed on a flight. For 
a given origin-destination pair, the calculator queries flight schedules and allows 
the user to choose from one of the represented aircraft models. The calculator is 
time-based, rather than distance-based like the EEA model. This means that each 
aircraft model represented in the calculator has an associated fuel consumption 
rate, expressed in kg/min. This fuel consumption rate is multiplied by the average 
flight duration for the route. The total flight fuel burn is then apportioned by seat, 
considering cargo carriage, seating layout, and seating class. 

This calculator is regularly updated with new data sources and is easy for non-
experts to use. The exact aircraft model coverage is difficult to calculate, but it is 
said to represent 78 aircraft types, which is fewer than the EEA 2019 model. While 
the online calculator is free to use, access to the underlying calculator data would 
be required to use with the TIM. That would require a license, and the information 
would not be available to external validators. The fuel burn estimate is based on an 
origin-destination pair. Primary data are only available for a subset of aircraft models 
based on schedule data; averages are used otherwise. There is no estimation of non-

4	 EEA, EMEP/EEA Air Pollutant Emission Inventory Guidebook 2023: Annex 1.A.3.a Aviation 2023, 
October 2, 2023, https://www.eea.europa.eu/publications/emep-eea-guidebook-2023/part-b-sectoral-
guidance-chapters/1-energy/1-a-combustion/1-a-3-a-aviation.3/view.

5	 IATA, CO2 Connect, https://www.iata.org/en/services/statistics/intelligence/co2-connect/.

https://www.eea.europa.eu/publications/emep-eea-guidebook-2023/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-a-aviation.3/view
https://www.eea.europa.eu/publications/emep-eea-guidebook-2023/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-a-aviation.3/view
https://www.google.com/url?q=https://www.iata.org/en/services/statistics/intelligence/co2-connect/&sa=D&source=docs&ust=1721415241256855&usg=AOvVaw1HrhllSMgIxPM4tsWoE7e3
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CO2 emissions nor clear documentation of data, calculations, or the assumptions that 
underpin the fuel burn estimates. 

ICAO Carbon Emission Calculator 
The ICAO Carbon Emissions Calculator (ICEC) uses aircraft operating manuals and 
reported fuel burn data to estimate carbon emissions for a flight.6 Fuel burn data 
reported to the U.S. Department of Transportation (DOT) are used to calculate an 
average fuel burn across discrete distances for all aircraft models represented in the 
database.7 The calculator provides the CO2 emissions per seat and per flight for an 
origin-destination pair for the mix of aircraft types that typically serve that pair. The 
calculator accounts for typical payload factors and seating layouts when apportioning 
the flight’s emissions to each seat. The documentation of the methodology contains 
the averaged fuel burn data and assumptions that underpin the calculator. 

Because the fuel burn values for all covered aircraft are listed in the publicly available 
documentation, they can be used by external validators.8 The model covers over 200 
aircraft types, corresponding to more than 98% of global flights. The calculator is easy 
to use and does not require aviation expertise to get fuel burn estimates. Similar to the 
EEA model, the input variables are limited to distance and aircraft model, the model 
does not disclose all the underlying data, and it is not updated annually. The model 
does not provide non-CO2 emission estimates.

TASOPT
TASOPT is an aircraft modeling code developed by researchers at the Massachusetts 
Institute of Technology (MIT) that uses coupled aero-structural-propulsive modeling to 
estimate the fuel burn for an aircraft on any defined flight path.9 It is the most complex 
aircraft model included in this assessment, requiring detailed definition of, amongst 
others, the aircraft geometry, construction materials, structural layout, and engine 
properties to define an aircraft’s performance. Getting fuel burn estimates requires 
defining the aircraft parameters, payload, and trajectory.

TASOPT is an open-source software, which means that it can be accessed directly 
by external validators and that the entire code base, along with all assumptions and 
calculations, can be examined. It gives the user immense control over the input 
variables, with options to define the aircraft, engine, trajectory, and payload. There are 
regular updates and ongoing maintenance of the code. It can provide NOX emissions 
based on engine performance characteristics but does not provide other non-CO2 
emission estimates. Because aircraft definitions are so detailed, only six aircraft models 

6	 ICAO, Carbon Emissions Calculator (ICEC), https://www.icao.int/environmental-protection/
Carbonoffset/Pages/default.aspx.

7	 See ICAO, ICAO Carbon Emissions Calculator Methodology, Version 13.1, August 2024, https://
applications.icao.int/icec/Methodology%20ICAO%20Carbon%20Emissions%20Calculator_v13_Final.pdf.

8	 ICAO, ICAO Carbon Emissions Calculator Methodology, Appendix C.

9	 The TASOPT code is available at https://github.com/MIT-LAE/TASOPT.jl.

https://py.contrails.org/
https://py.contrails.org/
https://doi.org/10.2514/1.C036763
https://doi.org/10.2514/1.C036763
https://github.com/MIT-LAE/TASOPT.jl
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are natively supported, with a coverage of 37% of global flights in 2019. The model 
requires aviation expertise to run.

OpenAP
OpenAP is an open-source aircraft modeling code developed by researchers around 
the world (and maintained by researchers at Delft University of Technology) that 
uses publicly available aircraft and engine data to estimate aircraft emissions.10 It 
uses aerodynamic performance data derived from trajectory analysis of real-world 
operations, aircraft geometry data gathered from open literature, and engine data 
from the ICAO EEDB. Once the aircraft parameters are defined, generating fuel burn 
estimates requires the definition of a trajectory using altitude and the true airspeed. 

Because OpenAP is an open-source software, it can be accessed directly by external 
validators and the entire code base, along with all assumptions and calculations, can 
be examined. In addition to distance and aircraft model, it allows for the definition 
of different trajectories, payloads, and engines. It provides emission estimates for all 
relevant non-CO2 emissions. It is regularly updated with new features and aircraft 
models. Defining a new aircraft model entails populating roughly 25 parameters, 
which requires aviation expertise. As of July 2024, the model supported 34 models 
natively with a coverage of 57% of global flights. 

Poll-Schumann method 
The Poll-Schumann method is a set of equations developed by researchers at Cranfield 
University and the German Aerospace Center (DLR) to describe the aerodynamic and 
propulsive performance of aircraft.11 These equations have been used as an aircraft 
performance module in the open-source pycontrails project.12 Fuel burn estimates 
require specifying an aircraft and running the model with trajectory data that include 
latitude, longitude, and altitude. The application in pycontrails includes provisions to 
use Automatic Dependent Surveillance-Broadcast (ADS-B) recorded flight trajectories 
and historical weather data to model wind conditions. 

That the method is open-source means that it can be accessed directly by external 
validators and the entire code base, along with all assumptions and calculations, 
can be examined. Custom flight trajectories and payload weights can be defined. It 
provides all relevant non-CO2 emission estimates by linking aircraft to engines in the 
ICAO EEDB. The project is regularly updated and maintained by the developers. The 

10	 OpenAP model and additional information are available at: https://openap.dev/.

11	 The model is described in two papers: Ian Poll and Ulrich Schumann, “An Estimation Method for 
the Fuel Burn and Other Performance Characteristics of Civil Transport Aircraft in the Cruise. Part 1 
Fundamental Quantities and Governing Relations for a General Atmosphere,” The Aeronautical Journal 
125, no. 1284 (2020): 257–295, https://doi.org/10.1017/aer.2020.62; and Ian Poll and Ulrich Schumann, “An 
Estimation Method for the Fuel Burn and Other Performance Characteristics of Civil Transport Aircraft 
During Cruise: Part 2, Determining the Aircraft’s Characteristic Parameters,” The Aeronautical Journal 
125, no. 1284 (2020): 296–340, https://doi.org/10.1017/aer.2020.62. 

12	 More information about the pycontrails project is available at https://py.contrails.o rg/.

https://openap.dev/
https://doi.org/10.1017/aer.2020.62
https://doi.org/10.1017/aer.2020.62
https://theicct.org/publication/co2-emissions-from-commercial-aviation-2013-2018-and-2019/
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initial definition of equations also included aircraft parameters for 54 aircraft models, 
covering 66% of global flights. To add a new aircraft model would require the definition 
of approximately 35 parameters. The model requires aviation expertise to run.

SUAVE
SUAVE is an open-source aircraft modeling code developed by researchers around 
the world (and maintained by researchers at Stanford University) that uses linearized 
aerodynamic and 1-D propulsive modeling equations to estimate the fuel burn on 
any defined flight path.13 It requires a detailed definition of the aircraft geometry to 
estimate aerodynamic performance. The aircraft model can be flown through arbitrary 
flight trajectories to get fuel burn for a flight.  

That the code is open-source means that it can be accessed directly by external 
validators and the entire code base, along with all assumptions and calculations, can 
be examined. There is considerable discretion in the definition of input variables, with 
control over payload, flight trajectory, and engine modeling. The code is maintained 
regularly with yearly releases of new versions. It does not provide any non-CO2 
emission estimates. As of July 2024, it only supported four aircraft, covering 28% of 
global flights. It requires aviation expertise to run.

BADA
BADA is an aircraft performance dataset maintained by EUROCONTROL.14 It comprises 
a mix of aircraft performance modeling informed by real-world aircraft testing data to 
improve its accuracy. It does not automatically provide fuel burn estimates; rather, the 
performance modeling yields throttle settings for the engines that then are converted 
into fuel burn rates using the ICAO EEDB. BADA is one of the aircraft performance 
model choices in the pycontrails project but requires a separate license to access.15

The model has representations of nearly all aircraft-engine combinations and can 
provide 100% global flight coverage.16 It provides control over payload, engine, and 
trajectory. Linking it with the ICAO EEDB provides information on all relevant non-
CO2 emissions. It has detailed documentation of its methods and calculations and is 
maintained regularly by EUROCONTROL. The license to use BADA depends on the 
application; aircraft manufacturers approve access to the most recent version of BADA 
on a case-by-case basis for specific projects. Its applicability to the TIM, and potential 
use by third parties for verification, were unconfirmed as of the publication of this 
study. It requires aviation expertise to run.

13	 More information about the SUAVE model is available at https://suave.stanford.edu/.

14	 More information about the BADA model is available at https://www.eurocontrol.int/model/bada.

15	 More information about the pycontrails project is available at https://py.contrails.org/.

16	 Roger Teoh et al., “The High-Resolution Global Aviation Emissions Inventory Based on ADS-B (GAIA) for 
2019–2021,” Atmospheric Chemistry and Physics 24, no. 1 (January 18, 2024): 725–44,  
https://doi.org/10.5194/acp-24-725-2024.

https://suave.stanford.edu/
https://www.eurocontrol.int/model/bada
https://www.icao.int/environmental-protection/Carbonoffset/Pages/default.aspx
https://applications.icao.int/icec/Methodology%20ICAO%20Carbon%20Emissions%20Calculator_v13_Final.pdf
https://doi.org/10.5194/acp-24-725-2024
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Piano 5
Piano 5 is an aircraft modeling tool created and maintained by Lyssis Ltd. that can be 
licensed to model aircraft emissions.17 The ICCT’s global aviation emissions inventory18 
uses Piano 5 as the underlying fuel burn model. This emissions inventory was within 
3% of what was predicted by Teoh et al.19 and within 2% of what was predicted by 
Quadros et al.20 following calibration using DOT Form 41 data. The key selling points 
of this model are the predefined library of aircraft models (which includes multiple 
versions of the same aircraft with different mass characteristics) and functions that 
automate trajectory generation and fuel burn analysis. 

The extensive library of aircraft models provides near-total coverage of global flights, 
with additional differentiation in performance and weight estimations for different 
engine options. There is significant freedom to define input variables such as payload, 
engine, and trajectory. The model provides estimates for non-CO2 emissions. The 
underlying calculations cannot be accessed, but most assumptions are listed and are 
changeable. It is uncertain whether the tool will be continually maintained. Running 
the model does require some data manipulation but the presence of a graphical user 
interface makes it more accessible than some of the more academic codes. However, 
Piano 5 requires a paid license which prevents its direct access by external validators.

Table 5 summarizes the initial assessment of alternative fuel burn models. The 
EEA 2023, OpenAP, and Poll-Schumann models were clear front-runners with four 
points each and were selected for a more detailed comparison. Piano 5 was also 
recommended to be analyzed as it provides estimates comparable to other aviation 
emission inventories developed using sophisticated models and inputs. Finally, ICAO 
ICEC was also included due to its prominent use in the United Nations’ aviation carbon 
calculator. Because BADA also scored well, its quantitative analysis and potential 
application in TIM will be further investigated in future work.

17	 More information about the Piano 5 model is available at https://www.lissys.uk/. 

18	 Brandon Graver, Dan Rutherford, and Sola Zheng, CO₂ Emissions from Commercial Aviation: 2013, 2018, 
and 2019 (International Council on Clean Transportation, 2020), https://theicct.org/publication/co2-
emissions-from-commercial-aviation-2013-2018-and-2019/.

19	 Teoh et al., “The High-Resolution Global Aviation Emissions Inventory.”

20	 Flávio D. A. Quadros et al., “Global Civil Aviation Emissions Estimates for 2017–2020 Using ADS-B Data,” 
Journal of Aircraft vol. 59, no.6 (2022): 1394-1405, https://doi.org/10.2514/1.C036763. 

https://www.lissys.uk/
https://doi.org/10.1017/aer.2020.62
https://doi.org/10.1017/aer.2020.62
https://py.contrails.org/
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Table 2: Initial assessment of alternative fuel burn models

Model License Coverage
Input 

variables
Non-CO2 

emissions Transparency Maintenance Readiness Total

EEA 2023 
update 4

CO2 
Connect -2

ICEC 2

TASOPT 2

OpenAP 4

Poll-
Schumann 4

SUAVE 2

BADA 4

Piano 5 2

Legend:    +1    0    -1

The five models ultimately chosen for quantitative analysis were:

a.	 EEA 2023

b.	 ICAO ICEC

c.	 OpenAP

d.	 Poll-Schumann

e.	 Piano 5

2.3.	Methodology for fuel burn estimation comparison
For the detailed evaluation, we applied the TIM validation framework to compare fuel 
burn estimates from the five alternative models and analyzed how close the estimates 
were to actual fuel burn data. We considered the flight data sample collected in 
the validation work, which combines public data from Brazil with the anonymized 
version of private flight data provided by around a dozen of Google’s partner airlines. 
The combined sample contains historical flights operated between 2019 and 2023 in 
different countries and by different airlines, with actual fuel burn reported.

As described above, each model has its own estimation methodology and input needs. 
EEA 2023 and ICAO ICEC require the fewest inputs among the models analyzed, using 
only distance and aircraft type definition. OpenAP and Poll-Schumann require additional 
trajectory data and the definition of aircraft characteristics. Piano 5 has many aircraft 
models in its predefined library and default parameters for several inputs, such as aircraft 
engine and payload; these default parameters can be changed as required by the user. 
To deal with this imbalance in input requirements across models, we adopted similar 
assumptions to the extent possible. This section describes these assumptions and how 
the fuel burn estimates of each model were structured and provides a summary of the 
validation framework used to compare estimates with real-world fuel burn.



10

To allow for the application of the validation methodology and comparison across 
models, the fuel burn estimates of each model were organized in the EEA style (i.e., 
at a minimum as a fuel burn list for a set of distances by aircraft type). Fuel burn was 
differentiated by other variables if the alternative model supported additional inputs, 
such as payload. We also associated the fuel burn estimates with the corresponding 
flight phase: Climb, Cruise, and Descent (CCD), Landing and Takeoff (LTO), or FF (Full 
Flight, combining CCD and LTO). EEA 2019 fuel burn estimates by aircraft type and 
stage length were then replaced with those from the alternative model, and TIM 
was run using the flight schedules from the validation dataset. The last step was to 
compare real-world fuel burn data, available for the flights in the validation sample, 
with modeled fuel burn using the TIM validation framework. 

The ICAO ICEC already provides data organized in the EEA style; these data tables 
were used instead of running the calculator itself. OpenAP and Poll-Schumann 
require flight trajectory data to estimate fuel burn. To maintain common trajectory 
assumptions, we used trajectory data of real-world flights provided by Imperial College 
London (ICL) collected by ADS-B telemetry.21 The aircraft codes represented in the 
dataset are listed in Table 3. The dataset uses ICAO codes while the validation process 
uses IATA codes, hence both are provided here. We used trajectories of the relevant 
aircraft class (narrowbody, widebody, or regional) or of a similar type for aircraft types 
that are not in the list. 

Table 3: Aircraft classes and types supported in ICL’s trajectory data

Narrowbody Widebody Regional

IATA Code ICAO Code IATA Code ICAO Code IATA Code ICAO Code

320 A320 333 A333 E7W E75L

738 B738 77W B77W E70 E170

321 A321 332 A332 E95 E195

319 A319 789 B789  

737 B737 788 B788  

32N A20N 772 B772  

752 B752 359 A359  

734 B734 763 B763  

739 B739 343 A343  

ICL sampled 100 unique flights by aircraft type, randomly selected from global flights 
operated between January 7 and January 14, 2019. In total, the dataset contains 
trajectory and meteorological data for 2,100 flights. Figure 1 presents an example of 
these data, showing flight altitude and flight distance for three prominent aircraft 
types. Figure 2 shows two examples of trajectories and corresponding meteorological 
data, including air temperature, winds, humidity, and real airspeed.

21	 For the trajectory data collection methodology, see Teoh et al., “The High-Resolution Global Aviation 
Emissions Inventory.”
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Figure 1: Flight profiles of the regional aircraft extract in ICL’s trajectory dataset
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Figure 2: Examples of trajectories and meteorological data in ICL’s dataset
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Table 4 summarizes the assumptions adopted for each model analyzed. As detailed 
above, OpenAP and Poll-Schumann require flight trajectories. For these two models, 
we first estimated fuel consumption for each flight within the ICL real-world trajectory 
sample set. Using these provided estimates, a linear regression was applied to generate 
representative fuel burn values for each aircraft type across various distance bins (125 
nm, 250 nm, 500 nm, 750 nm, etc.). The resulting data were then structured according to 
the EEA framework. EEA 2019 and 2023 have predefined trajectories based on real-world 
global operations that cannot be modified by the user. Piano 5 also provides estimates 
based on predefined trajectories, but the user can also define a trajectory, if needed; for 
our comparison, we prioritized testing Piano’s default trajectory assumptions.

For payload assumptions, EEA 2019, EEA 2023, and ICAO ICEC use default values that 
cannot be modified by the user; EEA’s default payload assumptions are unknown, 
while ICAO ICEC assumes that aircraft operate at maximum takeoff weight (MTOW), 
which corresponds to maximum payload for most flights. For Piano 5 and OpenAP, 
evaluators provided fuel burn estimates considering several scenarios, varying from 
0% to 100% of maximum payload by aircraft type. Poll-Schumann also supports user 
payload definition; we examined one payload scenario, considering the historical 
passenger load factor and not including cargo.22 

Table 4: Assumptions adopted for each model analyzed

Model

Assumptions

Payload Trajectory Flight phase

EEA 2019  
(base model) Default Default FF (LTO + CCD)

EEA 2023 Default Default FF (LTO + CCD)

ICAO ICEC Default
(assumes MTOW) Default FF (LTO + CCD)

Piano 5

User defined
(0% to 100% of payload 
fraction, with a 10% 
interval)

Default adopted 
(supports user-
definition)

FF (LTO + CCD)

OpenAP

User defined
(10%, 30%, 50%, 70%, 
90%, and 100% of 
payload fraction)

User-defined
(ICL sample adopted) FF (LTO + CCD)

Poll-Schumann

User defined
(one scenario analyzed 
based on historical 
passenger load factor 
data from ICAO  
and IATA)

User-defined
(ICL sample adopted) CCD

22	 See Teoh et al., “The High-Resolution Global Aviation Emissions Inventory.”
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For all models except Poll-Schumann, fuel burn estimates correspond to the full flight—
that is, the fuel consumed during LTO and CCD. Poll-Schumann estimates consider only 
the CCD phase, so direct comparisons with other models should be made carefully.

2.4.	Fuel burn estimation comparison
Using the fuel burn estimates provided for each alternative model, we calculated 
the aircraft coverage considering the 2019 global flights. If a given aircraft type was 
represented in the alternative model, its market share (based on the flight frequency of 
global flights in 2019 provided by OAG Aviation Worldwide Limited)23 was included in the 
aircraft coverage calculation. Table 4 presents the aircraft coverage of each alternative 
model. Most common aircraft types are supported by the EEA model, but the TIM 
includes some fallback types or correction factors for the missing aircraft. This model 
extension is considered in the aircraft coverage calculation of EEA and all alternative 
models analyzed, which results in higher coverage numbers for the EEA model 
compared to those quoted as native coverage in Section 2.2.

Table 4: Model coverage based on global flights from 2019

TIM current 
implementation (EEA 
2019 as base model) EEA 2023 ICAO ICEC Piano 5 OpenAP

Poll- 
Schumann

97.28% 99.03% 99.81% 89.83% 67.40% 74.91%

Figure 3 presents the validation sample coverage (i.e., the number of flights from the 
validation sample with aircraft types supported by each model) by distance bin (in 
gray), compared with EEA 2019 (in blue).

23	 Historical flight schedules data provided by OAG Aviation Worldwide Limited, available at  
https://www.oag.com/airline-schedules-data.

https://www.oag.com/airline-schedules-data
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Figure 3: Number of validation flights covered by alternative model, compared with EEA 2019

Figure 3 shows that EEA 2023 and ICAO ICEC covered all flights covered in EEA 2019. 
Piano 5 provided the next best validation sample coverage, with nearly 100% of flights 
from the validation sample covered. Poll-Schumann ranked fourth and OpenAP fifth. 

We then applied the model validation framework24 to compare the estimated fuel burn 
with real-world values from the validation dataset.25 Table 5 presents the comparison of 

24	 Travel Impact Model Advisory Committee [TIM AC], 2024. AC/3-TB/1: Methodology for validating fuel 
burn model changes.

25	 A flight was only included in the validation analysis if its aircraft type was supported by the alternative 
model. However, the alternative models that include payload as an input variable have an additional 
mission limitation: given the trade-off effect between payload and range, some long-distance flights 
may not be operational for higher payloads. Ideally, we would impose this limitation to define the 
validation sample and consider only flights with range lower than the maximum distance allowed for 
each payload scenario and each aircraft. This limitation is minor and we do not expect it to influence 
the relative merits of a given model.
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the error distribution across alternative models compared to the base model. EEA 2019 
had a median absolute error of 8.0% and presented a small overestimation trend for the 
shortest distance bin (125 nm) and an underestimation trend for longer distance bins. 
We observed that the median absolute error of the EEA 2023 model was slightly lower, 
at 7.8%, and that the over- and underestimation trends were the same as those of EEA 
2019, but with smaller errors across almost all distance bins.

The ICAO ICEC model had a median absolute error of 14.8%. It showed an 
overestimation trend across all distance bins that could result from using the MTOW 
as the payload in its estimation. When compared to EEA 2019, the absolute error 
increases for the shorter distances (from 125 nm to 1,500 nm) but decreases for the 
longer distances (> 1,500 nm). 

For OpenAP, only the 70% payload fraction scenario was analyzed, and it presented a 
median absolute error of 20.2%. We observed that the model tended to underestimate 
fuel burn for short distance flights (from 250 to 2,000 nm) and overestimate fuel burn 
for long distance flights (> 2,000 nm). The absolute error was higher than EEA 2019 for 
all distance bins.

Poll-Schumann presented a median absolute error of 15.2% and tended to 
underestimate emissions, especially for short distance flights. Compared to EEA 
2019, Poll-Schumann reduced the fuel burn absolute errors for long distance flights 
(> 2,000 nm) but presented higher absolute errors for shorter flights (from 150 nm to 
2,000 nm). However, as noted above, Poll-Schumann only models the CCD phase and 
does not account for the LTO phase. This likely explains the stronger underestimation 
trend for short-distance flights, which tended to gradually reduce with increases in 
distance, as LTO fuel burn is relatively smaller for longer distances.

For Piano, we analyzed three payload fraction scenarios: 70%, 90%, and 100%. The 
median absolute errors were 15.5%, 11.8%, and 10.1%, respectively. The model had a 
general underestimation trend that reduced as payload fraction increased.

Table 6 summarizes the full validation metrics results, including the median absolute 
error, error threshold analysis, frequency- and emissions-weighted distance metrics, 
and the distance and aircraft error metric.26 Both EEA 2019 and EEA 2023 performed 
well across most metrics, while OpenAP (with a 0.7 payload fraction) performed poorly 
on most. ICAO ICEC, Poll-Schumann, and Piano 5 had intermediate performance, with 
ICEC being the worst among the three and Piano 5 matching the validation better as 
the payload fraction increased. This effect suggests that improving the representation 
of masses in the TIM will improve its accuracy, a point to return to in future work. 

26	 See AC/4-TB/1 for definition of these terms. 
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Table 5: Comparison of the error distribution across alternative models
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Table 6: Comparison of fuel burn error metrics across alternative models

 
EEA 
2019

EEA 
2023

ICAO 
ICEC

OpenAP 
(Payload 

= 0.7)
Poll-

Schumann

Piano 5 
(Payload 

= 0.7)

Piano 5 
(Payload 

= 0.9)

Piano 5 
(Payload 

= 1)

Error metric Baseline Baseline Baseline Baseline Baseline Baseline Baseline Baseline

Median absolute 
error

Ideal value: 0%
8.00% 7.80% 14.80% 20.20% 15.20% 15.50% 11.80% 10.10%

Error threshold 
analysis

Ideal value: 100%
63.80% 65.10% 39.80% 29.50% 39.30% 38.00% 50.10% 55.40%

Frequency-
weighted distance 
metric (absolute 
errors)

Ideal value: 0%

9.54% 9.02% 16.38% 24.51% 18.32% 17.63% 14.22% 12.86%

Emissions-
weighted distance 
metric (absolute 
errors)

Ideal value: 0%

9.79% 8.79% 11.90% 20.60% 12.57% 14.20% 10.84% 9.51%

Distance and 
aircraft error 
metric

Ideal value: 1.0

0.88 0.90 0.76 0.83 0.85 0.85 0.90 0.92

Legend:    Best performance    Midpoint (percentile = 50%)    Worst performance

The colors in Table 6 indicate the best (green), midpoint (yellow), and worst (red) 
performance for each model against each error metric. The final ranking, considering 
the results of the validation analysis, is:

1.	 EEA 2023

2.	 EEA 2019

3.	 Piano 5 (payload fraction = 1)

4.	 Piano 5 (payload fraction = 0.9)

5.	 Poll-Schumann

6.	 Piano 5 (payload fraction = 0.7)

7.	 ICAO ICEC

8.	 OpenAP (payload fraction = 0.7)

We conclude that only EEA 2023 completely satisfies the immediate needs of the TIM. 
OpenAP, Piano 5, and Poll-Schumann could probably perform better after adjusting 
the user-defined assumptions. For OpenAP and Piano 5, for example, we analyzed 
multiple scenarios of payload fractions, but always adopted a fixed fraction across 
aircraft in each scenario. The actual payload fraction, however, varies with time and 
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across aircraft, region, and airline, and would require additional effort to be refined. 
This assumption appears to be already tailored in the EEA model.

In addition, OpenAP and Poll-Schumann would require additional work to increase 
the aircraft coverage. For Piano 5, the best performance obtained considered a 100% 
payload fraction for all aircraft, which is clearly a weak assumption, showing a general 
underestimation trend of the model. This trend could be a consequence of other 
assumptions (such as flight trajectory). Moreover, even if Piano assumptions were 
refined, its license would still be an issue. 

3.	 DISTANCE CORRECTION APPLICATION
The other change adopted in the TIM, as recommended by the Advisory Committee 
at AC/5, was the inclusion of a correction factor to adjust the distance input in the fuel 
burn estimation. Previously, the distance of each route was represented by the Great 
Circle Distance (GCD), meaning the direct distance between the origin and destination 
airports. Stage length was, therefore, underestimated in the TIM, given that actual 
flight paths are usually longer than the GCD due to several factors, including the actual 
route path, airport congestion, airspace restrictions, and bad weather avoidance. 

The distance correction factors derive from research developed by Teoh et al.,27 and 
are based on historical flight tracking data. Teoh et al. observed that actual distance 
flown is around 5% higher than the GCD on a global level, but this percentage varies 
across regions and distances. Given this finding, for the TIM application, this factor is 
represented by the ratio between the average real-world distance and the GCD for 
each airport pair. 

One of the main challenges in defining distance correction factors is that flight 
distance and fuel consumption do not always have a direct relationship. A lateral 
inefficiency may lead to lower fuel consumption if there are advantageous tailwinds in 
the longer path. Another challenge is that the TIM provides emissions estimation for 
future flights, based on planned flight schedules, with unknown weather conditions 
or airspace and airport restrictions. Even with these uncertainties, we consider the 
average distance flown of past flights as the best approximation for the expected 
distance flown for future flights.

ICL provided historical flight data, collected with ADS-B telemetry, from global flights 
operated in 2019. The sample includes more than 40 million flights that, combined, 
traveled 61 billion kilometers. Figure 5 presents the distance correction factors 
calculated for major airports in Europe and North America. The distance correction 
factors for transatlantic flights are symmetric, as shown by the green-dominated 
boxes on the lower left and upper right of the diagram on the left-hand side.

27	 Teoh et al., “The High-Resolution Global Aviation Emissions Inventory.”
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Figure 5: Distance correction factors considering routes between major airports in Europe 
and North America. Source: Teoh et al., “The High-Resolution Global Aviation Emissions 
Inventory,” Fig. 8; reproduced with permission. 

As mentioned previously, the EEA model separates the fuel burn for the LTO and 
CCD stages of flights. According to its documentation, the EEA model assumes that 
the aircraft travels 17 nm during the LTO cycle. The reference stage length, which is 
used as an input for the CCD fuel burn estimation, is calculated by subtracting 17 nm 
from the Great Circle Distance.28 The current version of TIM (1.9.1) does not include 
this 17 nm correction to account for the distance traveled during the LTO cycle. The 
distance correction factor updates the TIM calculations to be consistent with the 
EEA documentation by subtracting 17 nm from each itinerary before calculating 
CCD fuel burn using the EEA model. For routes not covered by the ADS-B data, the 
distance correction factor was represented by the average distance correction of the 
corresponding country pair. In the rare case when a country pair correction factor was 
not available (~2.5% of the flight schedule as of October 2024), an ultimate fallback of 
the global mean lateral inefficiency in 2019 of 5.2% was used.29

28	 European Organisation for the Safety of Air Navigation, EUROCONTROL Method for Estimating 
Aviation Fuel Burnt and Emissions: EMEP/EEA Air Pollutant Emissions Inventory Guidebook 2016, 
https://www.eurocontrol.int/archive_download/all/node/10913, 21.

29	 Teoh et al., “The High-Resolution Global Aviation Emissions Inventory.”

https://www.eurocontrol.int/archive_download/all/node/10913
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The adjusted distances, calculated by multiplying the GCD by the distance 
correction factors, were adopted as the distance input in the TIM. We then applied 
the validation framework to assess if the TIM estimation improved with the 
adoption of this model change.

Tables 7 and 8 show the validation charts and metrics, comparing the error 
distribution of EEA 2023 with and without distance correction. We observe that the 
application of the distance correction factor cut the median absolute error from 7.8% 
to 6.3%. As seen in Table 7 (b), we observed that the EEA 2023 had similar trends with 
and without the distance correction except for the shortest distance bin, in which the 
model presented a slight overestimation trend without the distance correction and 
a small underestimation trend with the correction. We observed an underestimation 
trend for the remaining distance bins for both models. 

Table 7 (c) shows that the distance correction factor reduced the errors for all the 
distance bins. That the underestimation trend fell with the application of the distance 
correction is also observed in Table 7 (a), given that the error distribution has slightly 
shifted to the right. This general model improvement is supported by the validation 
metrics of Table 8, which indicates that the distance correction improves the accuracy 
of the EEA 2023 model on all error definitions analyzed. In summary, the validation 
results support the application of the distance correction in the TIM.
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Table 7: Validation results for the distance correction application
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Table 8: Validation metrics for the distance correction application

Error metric

EEA 2023 EEA 2023

Baseline Distance correction

Median absolute error
Ideal value: 0% 7.80% 6.30%

Error threshold analysis
Ideal value: 100% 65.10% 70.10%

Frequency weighted distance 
metric (absolute errors)
Ideal value: 0%

9.02% 7.78%

Emissions weighted distance 
metric (absolute errors)
Ideal value: 0%

8.79% 7.59%

Distance and aircraft error metric
Ideal value: 1.0 0.9021 0.9087

4.	 NEXT STEPS 
Considering the analysis presented in this document and the model changes agreed 
in AC/5, EEA 2023 will be adopted as the new base model, replacing EEA 2019, and the 
distance correction factor will be implemented to adjust the stage length input in the 
fuel burn estimation. These changes will be implemented as TIM v2.0.0.

The TIM AC will continue to monitor the evolution of the alternative models presented 
in this study and the release of new models in the market. Any potential model can be 
analyzed following the structure presented in this document. As a next step, the AC 
will evaluate the performance of BADA and its potential as a TIM base model. Also, the 
impact of additional factors influencing fuel burn, such as payload, engine type, and 
wind direction and intensity, will be explored under a future workstream. Incorporating 
those second-order fuel burn effects to distinguish more and less emitting flights may 
help improve the precision of the TIM.


